History monoids occur in the theory of concurrent computation, and provide a low-level mathematical foundation for process calculi, such as CSP the language of communicating sequential processes, or CCS, the calculus of communicating systems. History monoids were first presented by M.W. Shields.M.W. Shields "Concurrent Machines", Computer Journal, (1985) 28 pp. 449–465.
History monoids are isomorphism to (free partially commutative monoids) and to the monoid of . As such, they are and are universal. The history monoid is a type of semi-abelian categorical product in the category of monoids.
denote an n-tuple of (not necessarily pairwise disjoint) alphabets . Let denote all possible combinations of one finite-length string from each alphabet:
(In more formal language, is the Cartesian product of the of the . The superscript star is the Kleene star.) Composition in the product monoid is component-wise, so that, for
and
then
for all in . Define the union alphabet to be
(The union here is the set union, not the disjoint union.) Given any string , we can pick out just the letters in some using the corresponding string projection . A distribution is the mapping that operates on with all of the , separating it into components in each free monoid:
where
Here, denotes the empty string. The history monoid is the submonoid of the product monoid generated by the elementary histories: (where the superscript star is the Kleene star applied with a component-wise definition of composition as given above). The elements of are called global histories, and the projections of a global history are called individual histories.
A letter that occurs in two or more alphabets serves as a synchronization primitive between the various individual histories. That is, if such a letter occurs in one individual history, it must also occur in another history, and serves to "tie" or "rendezvous" them together.
Consider, for example, and . The union alphabet is of course . The elementary histories are , , , and . In this example, an individual history of the first process might be while the individual history of the second machine might be . Both of these individual histories are represented by the global history , since the projection of this string onto the individual alphabets yields the individual histories. In the global history, the letters and can be considered to commute with the letters and , in that these can be rearranged without changing the individual histories. Such commutation is simply a statement that the first and second processes are running concurrently, and are unordered with respect to each other; they have not (yet) exchanged any messages or performed any synchronization.
The letter serves as a synchronization primitive, as its occurrence marks a spot in both the global and individual histories, that cannot be commuted across. Thus, while the letters and can be re-ordered past and , they cannot be reordered past . Thus, the global history and the global history both have as individual histories and , indicating that the execution of may happen before or after . However, the letter is synchronizing, so that is guaranteed to happen after , even though is in a different process than .
In simple terms, this is just the formal statement of the informal discussion given above: the letters in an alphabet can be commutatively re-ordered past the letters in an alphabet , unless they are letters that occur in both alphabets. Thus, traces are exactly global histories, and vice versa.
Conversely, given any trace monoid , one can construct an isomorphic history monoid by taking a sequence of alphabets where ranges over all pairs in .
|
|